Facile synthesis of V(4+) self-doped, [010] oriented BiVO4 nanorods with highly efficient visible light-induced photocatalytic activity.
نویسندگان
چکیده
Monodispersed monoclinic BiVO4 nanorods grown along the [010] direction were prepared using a one-step low temperature hydrothermal method in the presence of the low-cost, nontoxic sodium oleate serving as a chelating agent. The BiVO4 nanorods with diameters of 15-20 nm possess a huge specific surface area as large as 28.2 m(2) g(-1), which can endow them with high photocatalytic activity and strong adsorption of reactants. Meanwhile, the specific [010] growth direction is capable of facilitating efficient electron-hole separation by accumulating electrons on {010} facets. Thus, the highly efficient photocatalytic activity of the as-prepared BiVO4 nanorods under visible light, which far surpasses that of commercial P25, is demonstrated by the degradation of rhodamine B and phenol. Plentiful V(4+) species, which can create oxygen vacancies, is detected implying that the as-obtained nanorods are self-doped BiVO4. Significantly, 61% of rhodamine B is adsorbed by the BiVO4 nanorods before irradiation owing to the appearance of plentiful O(2-) and OH(-) species on the surface adsorbed by oxygen vacancies. More excitingly, the excellent visible-light-driven photocatalytic activity of the as-obtained BiVO4 nanorods can be further elevated to an unprecedented level, roughly doubled, after applying a low temperature heat treatment process at 230 °C for 2 h and this improvement could primarily be ascribed to their optimized charge-carrier transport characteristics resulting from elevated crystallinity and decreased V(4+) species.
منابع مشابه
Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation.
In this study, a novel visible-light-sensitive Bi2WO6/BiVO4 composite photocatalyst was controllably synthesized through a facile one-pot hydrothermal method. The Bi2WO6/BiVO4 composite exhibited a perfect nest-like hierarchical microsphere structure, which was constructed by the self-assembly of nanoplates with the assistance of polyvinylpyrrolidone (PVP). The growth mechanism of the Bi2WO6/Bi...
متن کاملSynergistic Effects of Ag Nanoparticles/BiV1-xMoxO4 with Enhanced Photocatalytic Activity
In recent years, BiVO4 has drawn much attention as a novel photocatalyst given its excellent ability to absorb visible light. This work reports the development of Ag-modified BiV1-xMoxO4 composites through a facile hydrothermal synthesis with the subsequent photoinduced reduction of Ag+ at almost neutral pH conditions. Metallic Ag nanoparticles were deposited on the (040) facet of Mo-doped BiVO...
متن کاملPreparation of Cr-doped TiO2 thin film by sonochemical/CVD method and its visible light photocatalytic activity for degradation of paraoxon
In this work, nanostructured TiO2 and Cr-doped TiO2 thin films were deposited on glass substrate through sonochemical-chemical vapor deposition (CVD) method. The resulting thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible absorption spectroscopy, and photoluminescence spectroscopy techniques. The TiO2 thin film has nanocubic morphology and ...
متن کاملOne-pot synthesis and Nb4N5 surface modification of Nb(4+) self-doped KNbO3 nanorods for enhanced visible-light-driven hydrogen production.
Herein, rhombohedral self-doped KNbO3 (S-KN) nanorods were fabricated via a one pot, solvothermal method without using any surfactant. The presence of Nb(4+) in S-KN greatly narrows its band gap and thus extends its photoresponse from UV to the visible light region. Moreover, S-KN/Nb4N5 nanorod heterostructures were obtained by nitriding S-KN nanorods for different times, which exhibited signif...
متن کاملControllable Synthesis and Tunable Photocatalytic Properties of Ti3+-doped TiO2
Photocatalysts show great potential in environmental remediation and water splitting using either artificial or natural light. Titanium dioxide (TiO2)-based photocatalysts are studied most frequently because they are stable, non-toxic, readily available, and highly efficient. However, the relatively wide band gap of TiO2 significantly limits its use under visible light or solar light. We herein...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 44 شماره
صفحات -
تاریخ انتشار 2014